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Abstract—A perturbation method is developed to predict stability of parametrically excited dynamic
systems containing multiple perturbation parameters. This method, based on the Floquet theorem
and the method of successive approximations, results in a non-lincar matrix eigenvalue problem
whose eigenvalues are used to predict the system stability. The method is applied to a classical
circular plate, containing elastic or viscoclastic inclusions, excited by a linear transverse spring
rotating at constant speed. Primary and secondary resonances arc predicted. The transition to
instability predicted by the perturbation analysis agrees with predictions obtained by numerical
integration of the equations of motion.

I. INTRODUCTION

Parametrically excited systems usually contain a single excitation parameter k and take a
standard form

ii+~ Z C(x) ci.tﬂl (I+ [B'f"\' Z H(x) euﬂl}q = 0 (I)

¥= - sm -t

where q is a column vector, B is a diagonal matrix and H” and C*, s =0, + 1, +2,..., are
square matrices. When « is small, perturbation methods such as the method of multiple
scales (Nayfeh and Mook, 1979) and the Krylov-Bogoliubov-Mitropolsky method can be
used to determine q analytically. Perturbation analysis shows that (1) possesses unbounded
response at particular values of Q (Valeev, 1963 Hsu, 1963, 1965; Nayfeh and Mook,
1979). Elimination of sccular terms evolving in the perturbation analysis gives the transition
curves identifying the stability boundaries in the k-Q plane.

Parametrically excited systems with multiple excitation parameters also arise in engin-
ecring. For example, circular saws with viscoelastic material placed in radial rim slots have
been used to inhibit thermal buckling of the plate and simultaneously increase its damping
without increasing its thickness. A rotating asymmetric saw, excited by stationary guide
bearings and the workpiece, can be modeled as a parametrically excited system with two
excitation parameters : the normalized stiffness x of the guide bearing and the dimensionless
measure of the inclusion size ¢ (Shen and Mote, 1991b). The response of such systems
satisfies
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g+ ¥ C""(e:)e““"'q+[B(a)—%x Z H“’(a)c““‘}:@ 93]

= e r s e

where C"{¢). B(¢) and H"'(¢) are convergent perturbation series in ¢ with

) ¢Ci+e°Cot-r, 5=0
Cm(g) = [C:;’(b)] = CN(E)[ - { ! M

0. s#0 (3a)
B(:) = diag{oi(e).mie)....] = B,+«B, +&'B. 4+ - (3b)
H' (@) = [H) ()] =H"()" = H ") = HY +:HY +'HY +- - (3¢c)

One solution method specifies the relative order between k and ¢ a priori (e.g. © = £°)
to transform (2) into a system with one perturbation parameter. Application of the existing
perturbation methods can then determine system stability for any relative order specified.
The process becomes unwicldy and arbitrary for several perturbation parameters and
relative orders.

The purpose of this paper is to present a new perturbation method for parametrically
excited systems that does not require a priori specification of relative order among multiple
perturbation parameters. In this method, the response is represented as a product of a
characteristic exponential and a Fourier series following the Floquet theorem. Then appli-
cation of the method of successive approximation {Valeev, 1963} results in a non-lincar
matrix eigenvalue problem whose cigenvalues give the characteristic exponents and stability
transition curves of the system. This method is applied to u classical, circular plate with
small elastic or viscoclastic inclusions to determine system stability and transition curves
when the plate is excited by a lincar, transverse spring rotating at constant speed.

2 STABILITY ANALYSIS

Consider an N degree of freedom parametrically excited system governed by (2) and
(3a ¢) with x characteristic frequencies

w, = eyt F= 0L jra—1
near o and ff characteristic frequencies
oy, = un A, i=kk+ A+

near o, in which g, is small compared with both w; and w,. According to the Floguet
theorem,

(I(l) = C[!I Z um; me (4)
"o ¥

where p = p(x.¢) is a characteristic exponent. Substitute (4) into (2) and collect terms to
obtain

[(p+inQ) Ly +Blu™ + Y [{(p+isC” " +xH" " =0, n=0,£1.+£2,... (§)

R
where Ty is an .V x V identity matrix and o' = (" .. .. )", The equations in (5) are
¥ N
M+ Y Y fe =0, n=0.%£1+2,..., r=012..N (6)
e |

where
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e = e (Q, p) = (p+inQ)* + )} (7a)
(nJ) (Q‘I—ISQ}C(" :)+K.H{n s!. (?b)

Consider a characteristic exponent p(x, &) * p, = iw; at a particular combination res-
onance Q = Q; = (w;+wy) L. For such (Q,. po),

" (Qo,po) =0, if (nne¥ip™’ ®)
where

Y& = {0, .0, j+ Do (0, jHa—D} U {(—LK), (= Lk+ 1), ... . (=Lk+p~ D}

€)
Equations (8). (9) and the definition (7a) imply that
" O(x) or O(), if (n,nNeYyP "
€, (Q-.”) -~ O(l). lf (n‘r)¢ Y;f -}
Thercfore, (6) can be rearranged as
, jbx-1 kef-1
Him = ""df»m}: (a ) {r} d(n) z f(n Xu] {0} !(a) Z f{n -0, i n (}Ga)
X gk
for (n.r)¢ ¥ “M and
Fra i
c(’m(ﬂ. p)u‘,"' Z j"' 1) (v) Z f(n mu(m Z f‘" -, ( n (lOb)
oy (A

for (m.rye Y ", where d = [e"(Q, p)} ' ~ O(1) and Z Z Z with (s, q) ¢ Y0,

PR A

It cun be shown that (10a) is a contraction mapping in an L, norm |jul}, = Z' if &

LX)

()
u,

and x are small enough such that the contruction constant

1= max {z ’d"”f""”

nr

—wssstsqsmaﬁmyww}

\dtlsf&.s i < 1. Thercfore, p”, (n.r)¢ Yi0~" in (10a) can be determined in terms of

" (mr)e Y0 by successive appmxxmauon to any precision independent of the relative
ordcrs of x ‘md £. The numer of itcrations needed depends on the order of the perturbation
analysis. For second order perturbation analysis, second iteration of the contraction map-
ping (10a), with the initial condition «{’ = 0 for (s, ¢) ¢ Y ™", results in

i+z- kg1
{ ('r)} d‘(n)(Q p}z f‘"J}d(’)(Q, P){ Z f{:O}“(O)+ Z fg;'-f)ufn—l)}

moy mwk
j+a-1
’-d,(.”)(Q. P)[ Z sn .0) (0)+ Z f(rl -l)usn—ll]' (”,f)é Y}E.*—l).
LY} mwk

Substitute [4{"]** for 1 in (10b) and retain terms up to second degree in £ to obtain
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E;(H(Q' p} 0 ‘,;U) B Bc'km Bu; -0 v}”’
0 .-*E;'“(Q_ P} ‘,L-() - i 5 /m Bx PR v;«!) {I U

where boldface indices j and k in (11) denote the index ranges j = {j. j+1..... Jra—1}
andk = (A k+1.... . k+8—1]. Also.

(0 .
v = o DT
. oy R N iy
W= —iy Zcuk(uL bouhL L. w ot
E(O) Q )_, ! d m» Q. M (T O
Q. p) = 5—diag [ (Q. p). €7 (. p).....elT, 1 (Q p)]

EC(Qp) = 5— dldg[ek Q. p).ei Q). el (Qp)]

and

v=j0+ o Jj+a—1¢€j

pmmy _ 4 (e my
Bjk = B ]xxﬁ‘ 6=k'k+l,...,k+[r—l€k

e yo
\/ [ONON

with

ng;.n) Z l(m ”([“)(Q, [’)j‘..(,:{m __j-jx.,n)‘

Introduce two detunings = and o defined by
p=idoytiz, Q= atun +o. (1)
The existence of non-trivial solutions of (11) allows the determination of = in terms of a.
Substitute (12) and (7a.b) into (11) and recall C*' = @ for s # 0 to reduce (11) to a non-
linear matrix cigenvalue problem

(CV+C L0y~ =L WH[R(Z, 0) + (K =K Py = Kl =0  (13u)

where = is the eigenvalue for specified o,

. (G700 HCW L., 0
C =y e |® ) HC),. (13b)
1
lo| T carc 0
g=i
C(U— Cé&) 0 _ g4} Xz
= 0 Czp) = .
0 - tan| ¥ CRaPC
L qq:kl pup ]
(13¢)

A 0 A = dia TR TS 7 S
2=[ } ] i g{}ll Uy u, !] (l}d)

0 oly—-A, TAy =diag g, e Hiep-1]
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The eigenvalue = for specified o in (13a) can be solved either numerically or through
perturbation as illustrated in the next section. In addition. (13a) is valid for any relative
orders of x and ¢ as long as x and ¢ are sufficiently small that (10a) is a contraction mapping.
The system is asymptotically stable if Im[-] > 0. A similar procedure applies for higher
order perturbations or systems containing additional perturbation parameters.

3. SPECIAL CASES

The stability of q can be determined from (13a) through perturbation if a relative order
of x and ¢ is specified. Three cases are examined. In each case the stability of the undamped
system is studied first, and then damping of order ¢ is introduced. These cases arise in
asymmetric plates under a rotating spring with coefficient .

3.1 Primary resonances of O(x)
This instability occurs when x <« e, i, ~ O(x), iej k. K" ~ O}, p=iw;+i.
= Wj+wk+0" and
g~ O(x). (14
Undamped systems. C*” = 0. Let

o= KT AR (15)

and substitute (14) and (15) into (13a) to obtain

(Uy—=rz*L, v+ O(r7) =0 (16)
where U, = D+ D, with
; A+ rK§” 0 ,
Di=Bi=1""0  of,—a—rky (7
0 Kx;;‘;;,]
D,=D!= . (17b)
: : [:\-K;,‘:i_,; 0

Stability is predicted by the eigenvalue x=* of U,. If Im[xz*] > 0, then the system is
asymptotically stable up to O(x). If Im[kz*] < 0, the system is unstable. If Im [k=*] =0,
the system stability may be determined by O (x?).
Damped systems. C< ~ O(g). Substitute (14) and (15) into (13a) to obtain
(Uy—kz*L v+ O(r7) =0 (18

where U, = U, +iC‘®. Therefore,

ETUZU 1
T

Im{xz*] = Im [——_fr :] = oo [0TC*Vu+0"D,u] {19
i'u

i'u

where u is the eigenvector corresponding to x=*. If C**" is positive definite, then @'C*"u > 0.
In addition, C<® ~ O(g) and D, ~ O(x) imply that i'C*”u ~ O(x) and 4'Du ~ O(x).
Since x « &, (19) implies that Im [xz*] > 0. Positive definite damping O (¢) stabilizes the
undamped system asymptotically for x up to O(r).
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3.2. Primary resonances of O(c)
This instability occurs when x ~ 0(e). g, ~ O(e). iej.k,. K'” ~ O(1), p = iw;+iz.
IQ = (!)"'*‘(Ug‘(*a. Zmd

o ~ 0(). (20)

Substitute (15) and (20) into (13a) and recall k ~ O(g) to obtain (16) for undamped
systems and (18) for damped systems. Since x ~ O(g). (19) can result in negative Im [x=*].
Positive damping C*® does not necessarily stabilize the undamped system. A sufficient
condition for stability requires D.+ C® positive definite.

3.3. Secondary resonance of O (x*)
This resonance occurs when x ~ O(e). Kyl ~ O(e). Ki” = L. KD = md,. k.
o~ O K ~ 0. &y = gyl A = iy gy i ~ O(e). p = i+, IQ = o+ w + 0.

Undamped systems. Let

6 =0y+rg*™ 4 (21a)

S= bR (21b)

where o, and z, contain only first order terms of & and « Substitute (21a,b) into (13a) to
get

(Uy+Upg~&2** w4+ 0 =0 (22}
where Uy = D;+iD, with
Khl 5 el by
- 2{4} (khy+ 21, — kKo, 0
03 = sg = 2 xkk 2
0 Kia** 1, + S (Wl + 2p) 1+ 87K,
Uy
D. = B [ 0 KK -Kle.i/’;]
s ’\Kfij‘( l)"’f:Kkj(d) 0
and
U [(uj-—:u-kxll,)l, 0 ]
0 0 (6o — o~ ptu =K, |7

Secondary resonance occurs when Uy = 0 and Im [x°2**] < 0. This implies that

oq = K+ )+ + p,
2 = Khy + 4.

Therefore, the secondary instability region in the x —Q plane surrounds the line
1Q = k(I +h) + 1y + i + oy + . (23)

Damped systems. C*” ~ O(e). Substitute (14) and (15) into (13a) and recall k ~ O(e)
as well as K{{} ~ O(¢) to obtain (16) except that U, is replaced by Uy = D +iC<?, where
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A +kK° 0 ]

. 3
0 ro*E,— A — kKo (24

b.=bi=|

Damping always stabilizes the system at least up to O(x) for positive definite C%°, because

al1t =T
Im[kz*] = [m [u _quu] ue
i'u

where u is the eigenvector corresponding to the eigenvalue nz*.
For k- ~ O(¢) the resulting equation would be (21a.b) and (22) with U, replaced by

U5 = LI1+IC V= D}+l‘(D4+C(‘()"). (25)

A sufficient condition for stability requires D, + C*"" positive definite.

4. CIRCULAR PLATES WITH SMALL INCLUSIONS

The perturbation method is applied to a circular plate containing small elastic or
viscoelastic inclusions to predict its stability under excitation by a hnear, transverse spring
rotating at constunt speed. The transition curves in the £ plane are compared to those
obtained from numerical integration of (2).

4.1, Theoretical buckground

Let ¢ be a small, dimensiontess measure of the inclusion size (c.g. ratio of the arcas of
the inclusions and the plate). The normalized cigensolutions ¢, (r}. fi,,, of the asymmetric
plate, represented in terms of normalized cigensolutions ¢, (r), m,, of the corresponding
axisymmetric platet, arce

2 M . ! L2 .
P = Oy 6l + L7 0 4 (26a)
and

lllmn (l’) = (bmn (f) + z Z {H“:n!n)ij + gzain:n)ij +oen }‘bl} (r) (26b)

iw0 ju - o

where ui, pio and i), have been determined analytically by Shen and Mote (1991a). In
addition, some normatized cigenvalue pairs f,,, and f,, .. that arc repeated (o, = w,, ..}

in the axisymmetric plate, are distinet (split modes) in the asymmetric plate with
A/}nm = /fmn'—/)’m, n ™ ()(1:), (27)

while the remaining cigenvalue pairs remain repeated. The plate response w(r, £) admits an
eigenfunction representation

tw,,., is normalized 4s o, = G/, @, is the eigenvalue corresponding to the cigenmode with m nodal
circles and n nodal diameters of the axisymmetric plate, and w,, ts the critical speed of the plate, i.c.

(D
m‘.,xMin{-” Com=0.1,...on=012.., }

The explicit expressions of ¢,.,(¢) are as follows, When n =0, (0 = R,alr). When > 0, @010 =
R (r)ycos (a8} and @, _.(r) = R (rysin(ni). R, (r) is a lincar combination of Bessel's functions satisfying
boundary conditions at both rims and the orthonormality condition

l L.
j GOV 01l = 3,0,
b1y

where A and A are the domain and outer radius of the plate. respectively. Similarly, f., is normahzed as
B = fonito,. where f§.,, is the asymmetric plate cigenvaluc.



Parametric excitation 1027

I x *
Ymn (1)) (28)
Y, ?ahé‘z’;‘:u"'z*” !

po. h and b are density, thickness and rim radius of the plate, respectively. t = w, fis a
normalized time, 7 is the physical time, and g,,,(?) is a generalized coordinate.

When the asymmetric plate is excited by a spring rotating at normalized rotation speed
Q = Q/w, along acircle at r = r,. Shen and Mote (1991b) showed that q, the vector of g,..(1),
satisfies (2) and (3a—c) in which C'*®(g) ~ O(¢) is positive definite, B(e) is diagonal with
elements f2,. and

w(r, 1) =

T 2
H"’(e) = _;:J; e in U(ro, QY (r,, Qn¥dy, T= g 29)

where §(r,, Q) is the vector of ¥,.,(t) evaluated at r = r, and 6 = Qt. Therefore, the
perturbation analysis and the special cases in Sections 2 and 3 can be applied to predict the
stability of the asymmetric plate/spring system.

4.2, Primary instability

Primary resonance of O{x), (x « ). Let the inclusions be elastic and consider two
vibration modes #,,,{r) and ¥,,(r) with cigenvalues f,., and ;. If ,...(r) and ¢, (r) are split
modes, then as specified in Scction 2

w, =y =f.,, o=a=, a=f=1 A=48A=0 I=|ntjl£0

because a pair of split modes ,,,(r) and ¢, ,{r) are not approximately repeated when
K <« Afl... [of. (2] Substitute (26b) into {29), and recall the definition of K‘(") in (131} and
the explicit expressions of ¢, to obtain

. [iN MLIE S
K Wy I/,,, [ K“’) - Il'z l K] 0 . ImnI)U I‘M‘ K{()) ~ O(U (30)

1] b
g /gmn ' " ﬂq ’ “- ’

"' /ﬂmnﬁt}

where

n ] £ oo i
i’fur)t = ?Emt Ve IRma(rO} yfn}a—n = (’fn tx = - :Z’Rmn(fﬂk n>0.
According to Section 3.1, resonance occurs at
Q=f,,+p,+0. I=intjl#0, o=ro*+0(x). 3

The width o of the resonance is determined by the eigenvalue x2* of U, satisfying

(:, Iyl )(-t_m 1;'§f’§2>+ i
B B, BB

Thercefore, the system is unstable when

ol | Y b
mn 1] AV l;rllllﬂli

where the superscript (£ /) corresponds to instability associated with { = [n+].
If () and 4, _,(r) are repeated modes and ¢,,(r) is a split mode, then a similar
approach results in resonances (31) when
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i ;_‘rm{j ‘_,(wi:\j WI,,MJ‘,(:“

R R N =limni:
Jrr*—( ey )! g v T (33)
| - P I v /}mn/f:/

Similarly. if ., (r). 4, .(r) and ¥, (r). &, (r) are two pairs of distinct repeated modes.
then the system is unstable when

‘ Jotr | 2 ‘["ME: ! ‘»l‘.lnl.,tgxii
, ijomn Pity ~limny
lg* — "/T" + /), P M O (34)
! Do o/ \,’ /;mn/)’:/

The threshold rotation speed of the primary resonances Q, = Bont+B.) In 4! [of
(3D)] occurs at supercritical speed (i.e. Q4 > 1) and below the critical speed within O(z)
[te. Qu—1 ~ O(e)] as follows. Equation (26a) implies that

D 4+ ) & eyl
Q =T E | P My 2
! |”t/‘ l’li/{ 2(")"111 + "(“)il +O(} )

in which

”)mn +(”// -~ l\/ﬁn ((")nm (")x/> > |
.. = . . =
E) fu] 1]

Therefore, Q,, > 1 when the incquality holds, and @, — | ~ O (&) when the equality holds.
When the inclusions are viscoclastic, positive definite damping C'(i) ~ O (&) sup-
presses all the resonances for k<« £ according to Section 3.1, Tt can also be shown that (32)

and (33) are valid when ,,(r) ts an axisymmetric mode (e, = 0) with 34 = R, (r,).

Primary resonance of Oe), [k~ O], Let the inclusions be elastic, and consider the
combinuation resonances caused by a pair of split modes ,,,,(r). ¥, .(r) and a pair of
repeated modes o, (o) 4, (). Since the pair of split modes ., (¢) and ¥, (r) are almost
repeated because k ~ AfS,. as spectfied in Scction 2

0, = = P o = ey =y =, =) (35a)
r=f=2 A =daglo, ALl ~ 0@ Ac=0. I=|ntj]#0 {35b)
with
Ly 2 VAN IR l _4:1
Ku‘” — ‘u:m[ l:, K“‘:‘ — |u‘/ | l:. K]‘L(:/', — /{’l:lll/i”r [ . _ l" (36)
[ B 2, LT L

The instability zone is then determined in Section 3.2 with (35a.b) and (36). Unlike para-
metric resonances of O (w), a close form expression such as (33) cannot be obtained because
A # 0

When k<« e, two separate primary resonances of O(x) occur as predicted by (33).
When x ~ Q). only one primary resonance of O(x) occurs as predicted tn Section 3.2
This implics a coalescence at & ~ O (&) of two separate combinition resonances emanating

from

,mn + ,1/ fm n + f,
Q:/) ‘ () and Q——‘/ ' ./l~
In+ I+ /]

This coalescence of instabilities occurs only when a pair(s) of split modes participate(s) in
the instability. For instability not involving split modes. the results for k < e in (31) to (34)
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apply for x ~ O(¢) because U, = U, in the undamped system. When damping is present,
instability zones are determined by the eigenvalues xz* of U,.

4.3. Secondary instability ‘
Let the inclusions be elastic. and ,,,(r) and ¢, (r) be split modes of the plate. Consider

w/=wj=ﬂmn~ wkzwk‘:ﬂuv a:ﬂ:l, AjzAk=0, [#lni'_]l, 1?‘30,

and note that

RCTH L2 ] ,
K = D= x;;">=‘-"-g—'-. K% ~ 0. K ~0() (37)
”n if

for I # |n+j| [¢f. primary instability (30)]. According to Section 3.3, the instability is
secondary and is centered with respect to a straight line

<lytn)|2 I.,(_/)Iz)
1Q = w| "= + )+ B+ By (38)
ﬁmn ﬂ:j ﬁ !

and the unstable zone width o** satisfics

a** 4 l (!”:":’”:): + l - {.}':;;“.z): 4+ 1r KO
2/{1»"1 ”nm 21”!/ ﬂu

where 1r K<' is the trace of K¢V,

Sccondary instabilitics involving repeated modes or axisymmetric modes can be found
in a similar manner. The resulting instability zones in the k-Q plane will also be centered
with respect to (38). If damping O(g) is present, sccondary instability will be suppressed
for Kk ~ O(x).

<2./IDet Dy (39)

K

4.4, Numerical examples

Stability of the plate/spring system, studied numerically by Shen and Mote (1991b), is
predicted by the perturbation method. The plate is a uniform Kirchhoff circulur plate with
three evenly spuaced, radial inclusions. The plate is fixed at r/b = 0.5 and frec at r/b = 1.
The inclusions cach span g smali angle ¢ = 0.035 radian (x2°), are located at ¢ = 07, 120°
and 240, and extend from r/h = 0.75 to r/b = 1. The inclusions are elastic or viscoelastic.
For elastic inclusions, the material properties satisfy

Po_Eo s o ,
= =05 g =0, =03 (40)

where p, E and o are density, Young’s modulus and Poisson’s ratio. The primed quantitics
refer to the inclusions and the unprimed to the plate. For viscoelastic inclusions, the material

damping satisfics
EY [En
:=—Ef Z,?%F‘=°'°5° ot =03 (41)

in addition to (40). Furthermore, the plate is subjected to a transverse spring rotating along
the circle r/b = L. A split mode pair ¢o _ (1), ¥o,(r) and an axisymmetric mode /,,(r) are
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used to predict transition curves in the x—Q plane. The eigensolutions used are shown
explicitly in Shen and Mote (1991b3.

Figure | shows primary resonances when the inclusions are elastic. The solid lines are
predictions from the perturbation analysis and the points are from numerical integration
of (2). The perturbation solution results from (31) to (34) for k « ¢, and from (35a.b) to
(36) for x ~ O(e). These two parts are then matched at instability coalescence. In Fig. 1.
three primary instability branches emanate from Q = 0.998, 1.002 and 1.007 representing
the parametric resonance of ¥, _:{r). combination resonance of the sum type for i, _(r)
and Yo;(r) and the parametric resonance of (¢} in that order. They coalesce when
Kk > 0.08. Similarly. two primary instabilities originating from Q = 1.702 and 1.711 are the
combination resonances of ¢, (r). W, () and (0. . (r). respectively. They coalesce
when « > 0.04. The perturbation and the numerical integration predictions of the stability
transition are in close agreement.

Figure 2 shows sccondary resonances for elastic inclusions. The perturbation solution
is predicted in Section 4.3. Both supercritical and subcritical unstable zones in the »-Q
plane are found. and most of them are very narrow. Only the larger ones are shown in Fig.
2. Three secondary resonances from Q x 2.0 arc from interaction between ), (r) and
o _3(r). The one from € x 142 1s caused by . (r). Two subcritical instabilities from
Q x 0.85 are caused by @ o(r), Yo ey and ¢, o(r). The perturbation solution deviates from
the numerical one for x > 0.5,

Figure 3 shows primary resonances for viscoclastic inclustons. Damping suppresses
resonances for x « £ as predicted. Perturbation solution tor £ ~ O (&) predicts the transition
curves. The perturbation and the numerical solutions are in good agreement. Also notice
that the unstable zone near © = 1,70 15 wider than ttis in Fig. 1 because of disparate modal
damping in g (e}, . () and i, ().

Primary Resonances of Undamped Plates
s o o o Numerical Integration () e

Perturbation "

U - Unstable

S - Stable
1.85
1.80 - S
1.75 |- U
1.70 g AR

[
1.06 - S
1.04
1.02
1.00
S 1 1

O‘an.o 0.10 0.20 0.30

Fig. [. Primary resonance stability boundary of a plate'spring system with three elastic inclusions
predicted by three mode analysis ¢, {8) a0 and (e,
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Secondary Resonances of Undamped Plates

» » o « Numerical Integration )
~——— Perturbation

U = Unstable
S —~ Stable
0.25
2.15 —
S
2.1 J
205 | ’
o 20
== J
1.44 b
1.42 |-
14 - "/
e
0.87
0.86 |- s
0.88 |~
1 1
. 1 .
0.0 0.15 :3 03 035 04 045

Fig. 2. Sccondary resonance stability boundary of a plate/spring system with three elastic inclusions
predicied by three mode analysis ¢, (e), .00} and ().

Primary Resonances of Damped Plates
= o o » Numerical Integration () -

Pertubation K
U —~ Unstable
S - Stable Q
1.85
1.80 }~ s
1.75 |- U
1.70
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S 3 \ ~11.725 £
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1.06 |- i 1.7

N t -41.895
1.04 0.01 0.02 0.C
1.02 -
1.00
S 1 L
0.
'%.0 0.10 0.20 0.30

X

Fig. 3. Prim:fry resonance stability boundary of a plate’spring system with three viscoelastic
inclusions predicted by three mode analysis @4 _5{r). 4,(r) and @4q(r).
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5. CONCLUSIONS

A perturbation method, based on the Floquet theorem and the method of successive
approximations, 1s developed to determine the stability of parumetrically excited svstems
containing multiple perturbation parameters. This method is illustrated by predicting the
stability of a circular classical plate with elastic or viscoelastic inclusions subjected to a
rotating transverse spring.

Primary resonances occur at supercritical speed or below critical speed within O (¢).
Their occurrence can be predicted analytically for x « €. Each split mode causes distinet
instability zones for » « &. These zones coalesce when « ~ O(&). Damping O(¢) by the
inclusions suppresses primary resonances for kK « ¢.

Secondary resonance zones in the ~—Q plalne are centered about straight lines predicted
analytically by (38). Secondary resonances occur at subcritical speed for / sufficiently large
though the unstable zones in the x~Q plane are often narrow. Damping O (¢) in the inclusions
suppresses secondary resoninces for K ~ O(¢).
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